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The motion of finely dispersed particles is described statistically with the use of the Fokker-Planck equation. 

An expression is obtained for the particle distribution function with respect to residence time. Results of the 

calculation illustrate the dependence of the average particle residence time in the apparatus on the process 

parameters. 

Use of vortex flows is one of the most effective methods for intensification of interphase heat transfer in 

apparatus with heterogeneous systems. Vortex drying chambers provide relatively active hydrodynamic regimes 

with sufficiently high relative velocities of the gas and particles, developed phase contact surfaces, and a high 

holding capacity and residence time in comparison with cyclone apparatus and pneumatic pipes [1, 2 ]. Development 

of the notions of motion and interaction of phases in vortex drying chambers and their complexity require using 
various kinds of methods for their investigation. In the present work the authors describe statistical simulation of 

motion of the disperse phase in a vortex disk chamber with the use of random Markovian processes [3, 4 ]. This 
approach is used for investigation of the process of separation in hydrocyclones [4-6 ] and motion of particles in a 
vortex chamber [7 ]. 

We will consider the case of motion of finely disperse particles for which (Re << 1) the inertial force and 

the component of the resistance force caused by unsteadiness of the motion can be neglected. Thus, the resistance 

force can be determined by the Stokes formula. The radial motion of the particles is defined by the centrifugal 

force, the resistance force, and the action of random forces caused by the stochastic nature of the motion and 

interaction of phases (Fig. 1). With the assumptions adopted, the equation of radial motion of a particle has the 
form 

2 
dr dp LOp (r) - pg] (r) 
-~  = V r (r) + 18pr 

1 + (r). (1) 
~,~e~p 

As can be seen from Eq. (1), the velocity of radial motion of the particle is the sum of a certain average 

value (the first two terms) and the fluctuation component. In this case the particle motion is a random process. 
Consequently, the particle distribution in the radial direction can be described by the distribution function f(r, T). 

The quantity f(r, ~r)dr determines the probability of resistance of the particle at the time r in the annulus 
[r, r+ dr ]. 

It will be assumed that ~ (r) is the delta correlation function of time with zero average value and intensity 

C'. In this case the random process considered can be assumed to be a Markovian process [3, 4 ]. Then, the 
probability density can be determined from the Fokker-Planck equation, which with Eq. (1) is written as 

Of 0 dp (pp (r) - pg) 1~ 
- -  Vr+ - - - -  (2) 

Or Or 18~r 2 Or 2 ' 

where 
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Fig. 1. Schematic diagram of a vortex chamber. 
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The particle density is expressed in terms of the moisture content as 

1 + u (z) (3) 
pp( r )  = p o  1 + Uin 

The moisture content of the particle is determined by the formula [8 ] 

du 
- ~ - =  - K ( u -  Ueq ) .  

Integration gives 

Kr (4) 
u (z) = Ueq 4- (Uin - Ueq) e 

Solution of Eq. (2) should satisfy the boundary conditions 

f = 0  at r = R 0 ,  (5) 

V r -F dp (pp (Tr) - pg) C Of (6) 
18/~r f--~ or=O at r=R. 

Boundary condition (5) corresponds to entrainment of the particles with radius R 0 from the apparatus, and 
J 

condition (6) means that the probability flux through the side wall of the chamber is equal to zero, i.e., that the 

side wall is impermeable. The boundary condition 

y (r ,  0) = f0 (r) ,  (7) 

where fo (r) is a known function satisfying the normalization condition 

R 

f fo (r) = 1 .  (8) 
R0 

When the particles are fed through a narrow annulus located at distance r 0 from the chanber  axis, 

/o (r) = 6 (r - r0). (9) 

In the case of a uniform particle distribution at the inlet 
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1 (10) 
/o  ( 0  - R - R o" 

The radial gas flow is approximated by the relation Vr(r) -- - A / r  m, where m = 1 is assumed for simplicity. 

The tangential velocity of the particles can be determined from the equations of motion. 

First, we consider the case where there is no relative circular motion of phases and the density of particles 

is constant, i.e., mass transfer in the chamber is neglected. Then, with the notation 

o) = 
W~ (r) r A B R  2 

, X = -  , P -  a - 

r R B R  2 ' C 

B = dp (,Op ,.-- p g) o) 2 

18/z 

Eq. (2) and boundary conditions (5) and (6) are transformed to the form 

_ _ w  x - - -  f + - - ~  
B Or Ox x 2a Ox 2 '  

f = 0 at x = x 0 , 

(11) 

(12) 

P )  1 Of 
x - - -  f - 0  at x =  1 

x 2a Ox 
(13) 

f (0, x) = 6 (x - x0). (14) 

The solution of Eq. (11) will be found by the method of separation of variables, assuming 

f (x, ~) = ~ (0 ~ (x). 

Substitution of Eq. (15) into Eq. (11) gives 

T (Q = exp ( -  2Bz),  

(15) 

(16) 

2ct dx  2 dx  x -  z[., + )t~ = O , 

~ p = 0  at x = x 0 ,  

e )  1 d~0 
x - -  ~ dx  x 2a 

- 0  at x =  1. 

FoUowing [5 ], we introduce the new variables will be introduced 

2 - v  - z / 2  a P  1 
z = x a ,  W = z  e g, ,  v =  2 4" 

After some transformations we obtain 

2 
dW 2 + 2 / 2 -  1 / 2 - v  1 / 4 - v  

dz 2 z z 2 

1 
W = 0 .  

4 

It is known [9 ] that Eq. (20) has two linearly independent solutions: 

(17) 

( 1 8 )  

(19) 

(2o)  
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v + l / 2  - z / 2  ~. 
_ q t ( z ) = z  e ~ ( 2 v - - ~ + l ,  2 v + 1  z ) ,  

- v + l / 2  - z / 2  J. r (z) = z e r (-- -~ + l , -- 2v + l ; z) . 

The eigenfunctions satisfying condition (18) are 

- 2aP I1 I I II 
g'i = x dp i (Xo) dPi (x) -- a lx  dP i (xO) dp i (x) , 

where al = xo  2ap-1 

The degenerate hypergeometric functions are defined by the expressions [9 ] 

( I ) I ( x )  = 1 + ] f in(J ' )X , 
n=l 

(21) 

(22) 

(I)II (X) 1 + ~ ]J2 (J') x2n 

n = l  

(2a) 

where 

n - I  2 1 
n 

Cn = _ _ .  n-1 1 n T 
[ I  ( i - a P + ~ )  " 
i=O 

n - 1  2 
I-I ( i + 1  -2) a - -  n 

i=0 
(,I) = .-I 

--~ 

3 nV 
1-I ( i + s P + g )  " 
i=0  

With Eq. (21), we have from condition (19) 

_ ~ i  F~I (I~ II (X0) [(I~ I (1)  -- ? (~) ] (I) I (X0) [a  2 (1)  -- . (/].) ] = 0 ,  (24) 

where 

n = l  

FU(2)=a ' -Ln~ = a  1 i(2) n '  a z = a l  1 - P - 2 a  " 

The eigenvalues )li are a solution of Eq. (24) and the eigenfunction ~0i correspond to each of the eigenvalues. 

Then, the solution of Eq. (11) has the form 

f ( x ,  T) = ~ C:p i exp ( -  2iB 0 . 
(25) 

i=l 

The constants Ci will be determined from initial condition (14). The functions ~Oi are orthogonal in the 
weight x2aPe -ax2 [10 ]. Consequently, 

1 z~ .  (26) 
1 f f O  (x) x exp ( -  ~X 2) ~i d x ,  

Ci = -~i xo 

t ~o~ x ~F' N i =  f e x p ( - a x  2) d x .  
Xo 
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Fig. 2. Differential curves of particle distribution with respect to residence time 

at different r / R  and co -- 150 sec-l: A = 0.04; P -- 1.01; K-- 0; 1) r / R  = 0.4; 

a = 1.98; 2) 0.4 and 1.58; 3) 0.8 and 1.98; 4) 0.8 and 1.58. r, sec. 

Fig. 3. Plot of the average particle residence time in the chamber versus the 

process parameters: 1) P = 1.01; 2) 1.16; 3) 1.46. ra, sec. 
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Eventually, formulas (21)-(26) determine the unknown function of the density distribution f(x,  r). 
If the particle density depends on time, for example, in the drying of particles and also in the case of 

relative tangential motion of the phases, the solution of the problem is more complicated. Therefore, Eq. (2) was 

solved by the finite-difference method. In the numerical experiment the process parameters a, P, and K were varied 

in a sufficiently wide range to reveal the character of evolution of the distribution function. The average residence 

times of particles in the given cross section and in the whole apparatus were determined from the relations 

1 

1 f  dx. u = fo / (x ,  r) r dr ,  Ta = 1 - x 0 xo 

Calculations were carried out with the following constant parameters: pp = 900 kg/ma; dp = 4.10 -6  m; pg 

= 1.2 kg/m3; R0 --- 0.075 m; R = 0.2 m;/~ = 1.82-10 -s  Pa. sec; Uin = 0.26 kg/kg; Ueq = 0.02 kg/kg. In Fig. 2 one 

can see the differential curves of particle distribution with respect to residence time at various process parameters. 

The parameter a characterizes the ratio of centrifugal and mixing forces caused by random interactions, and the 

parameter P = A(BR 2) determines the ratio of intensities of the radial resistance forces and centrifugal forces. As 

one would expect, as the intensity of the random forces increases and a decreases, the distribution curves appear 

more and more smeared with decrease in the average particle residence time in the apparatus (Fig. 3). As P 

decreases, the curves are shifted toward longer times and, consequently, toward higher average ra. Figure 4 shows 

that the curve of the particle residence time versus the chamber radius is parabolic. In this case, the residence time 

in the wall region is much longer than that in the central area. This fact is consistent with a higher concentration 
of disperse particles in the wall region, i.e., with formation of a rotating annular layer of particles, and agrees with 

experimental observations. As a decreases and the drying rate increases, the particle residence time in the wall 

region is reduced. The reduction of the particle residence time in the chamber with increase in the drying rate, for 
example, as a result of increase in the gas temperature, is associated with decrease in the particle density, which 

results in weaker centrifugal forces. Increase in the diameter of the inlet orifice also results in decrease in the 

average time [7 ]. 
Thus, analysis has shown a substantial effect of the process parameters considered, including mass transfer 

rate, on the evolution of the distribution functions and their characteristics. Since they determine the particle 

distribution with respect to moisture content and temperature, i.e., determine the quality of the product, the char- 

acter of the effect of these parameters should be taken into consideration in the design of vortex apparatus. 
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Fig. 4. The distribution of the particle residence time over the radius of the 
chamber: 1) a = 2.63; 2) 1.58; 3) 1.31; 4) 1.13 at P = 1.01; o~ = 150 sec-1; K 

= 0;  A - 0.04; 5) K = 0; a = 1.98; 6) K = 0.5; 7) 1.0. Y, sec. 
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N O T A T I O N  

A, constant; C', parameter characterizing the intensity of random forces; dp, particle diameter, m; K, drying 
rate coefficient; r, radial coordinate of the particle, m; RO, radius of the outlet orifice, m; R, radius of the chamber, 
m; u, Uin, Ueq, instantaneous, initial, and equilibrium moisture contents of the particle, kg/kg; Vr, radial gas 
velocity, m/sec; W~,, tangential velocity of the particle, m/sec; x -- r /R ,  dimensionless variable; /,, dynamic 
viscosity, Pa. sec; pp, pg, density of the particles and gas, kg/m3; z, time, sec; aJ, angular velocity of gas suspension, 

- 1  
s e c  
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